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Abstract
We propose an efficient scheme for sharing a continuous-variable quantum
secret using passive optical interferometry and squeezers: this efficiency is
achieved by showing that a maximum of two squeezers is required to extract
the secret state, and we obtain the cheapest configuration in terms of total
squeezing cost. Squeezing is a cost for the dealer of the secret as well as for
the receivers, and we quantify limitations to the fidelity of the extracted secret
state in terms of the squeezing employed by the dealer.

PACS numbers: 03.67.−a, 03.67.Dd, 42.50.Dv

1. Introduction

Secret sharing (SS) is an important cryptosystem protocol for dealing secret information to a
set of players, not all of whom can be trusted [1]. The encoded secret can only be extracted
(or, equivalently, reconstructed4) if certain subsets of players collaborate, and these subsets are
referred to as the access structure. The remaining subsets comprise the adversary structure, and
the protocol denies the adversary structure any information about the secret. The underpinning
scheme for arbitrary SS is (k, n)-threshold SS, which involves n players, and any subset of
k players constitutes a valid set in the access structure; other SS schemes can be constructed
via threshold SS, for example by distributing an unequal number of shares to players.
Although quantum secret sharing (QSS) was first introduced as a method of transmitting
classical information in a hostile environment with quantum-enhanced security [3], QSS was
subsequently established [4] as a quantum analogue to Shamir’s secret sharing described above
and we use the term QSS to refer to the latter approach. QSS provides a valuable protocol in
quantum communication but is also important as an error correction scheme [4].
4 We use the term ‘extraction’ of the secret state as the term ‘reconstruction’ is used in optical homodyne tomography
to refer to the process of inferring the wavefunction by subjecting many identical copies of the state to a battery of
measurements; see for example [2].
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Here we are concerned with continuous-variable (CV) QSS [5]. Quantum information
protocols and tasks are now studied both as discrete-variable, qubit-based (or qudit-based)
protocols and tasks [6] and as CV realizations [7]. CV quantum information protocols
are generally realized in optical systems and exploit advanced quantum optics tools, such
as the generation of squeezed light [8] and ability to count single photons [9, 10], as
well as the low rate of decoherence for optical systems. The recent demonstration of CV
unconditional quantum teleportation [11] is an excellent example of the capabilities of
CV quantum information processes in optical systems. Moreover, the technology for this
CV quantum teleportation is not very different from the techniques required for CV QSS.

The original proposal for CV QSS [5] established a general method for CV QSS, and for
(k, n)-threshold schemes in particular, using interferometry involving passive optical elements
(mirrors, beam splitters and phase shifters), active elements (squeezers) and homodyne
detectors. A (2, 3)-threshold scheme was proposed involving a single squeezer, thereby
suggesting an experiment that is within the reach of current technology [12]. The original
proposal of how to perform the general (k, n) scheme was complicated, though, by the need for
an increasing number of squeezers in the interferometer. A practical realization of threshold-
QSS would need to minimize the number of optical squeezers as the number of players
increases.

Here we establish that, for any number n of players and any threshold level k for the
number of collaborators to be in the access structure, the total number of squeezers needed by
the collaborating players does not exceed two. This remarkable result informs us that at most
two squeezers are required for an arbitrary number of players n. In particular, to extract the
secret state, the collaborating players require access to an interferometer with k channels but
only two active components (i.e., squeezers). This analysis also allows us to determine the
total amount of squeezing required in a two-squeezer threshold QSS protocol: the analysis
is important because the degree of squeezing required for the protocol can be regarded as an
effective cost for the procedure [13].

The second major concern of this paper is the extent to which it is possible to achieve
the goals of the CV QSS protocol with finite physical resources. For the protocol to work
perfectly, the dealer needs access to ancillary states prepared with infinite squeezing; as this is
not physically possible, we analyse the effects of finite squeezing, which imposes limitations
on the fidelity of the extracted secret state.

The paper is organized as follows: in section 2 we summarize the CV QSS protocol for
threshold schemes. In section 3, we describe an efficient extraction of the secret state, which
requires the minimal number of squeezing elements and minimal overall squeezing. The total
amount of squeezing is discussed in section 4 and we conclude in section 5.

2. Threshold QSS with finite resources

The optical (k, n)-threshold scheme is sketched in figure 1. A dealer holds a pure secret
state |ψ〉 realized in a single mode of the electromagnetic field and encodes the secret as an
n-mode entangled state |�〉 by mixing it with n − 1 ancillary states in an n-channel active
interferometer, where the term active refers to one- or two-mode squeezers [14]. The dealer
then sends one output, or ‘share’, to each of the players, and at least k players must combine
their shares in an active interferometer to extract the secret state. However, the no-cloning
theorem [15] requires that no threshold scheme exists for n � 2k [4]. Also any threshold
scheme with n < 2k −1 can be obtained from the (k, 2k −1) scheme by discarding 2k −1−n

shares. Therefore, we concentrate on the (k, 2k − 1)-threshold scheme.
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Figure 1. The optical (k = 4, n = 7) QSS threshold scheme: the dealer encodes the secret via
an interferometer (AI) by mixing it with n − 1 ancillary states, transmits the resulting n shares
to the players and any k players employ a second interferometer to extract the secret state. The
interferometers are active, meaning that they employ both passive optical devices and energy-
consuming squeezers.

2.1. Entanglement of the secret state

The secret is a state |ψ〉 ∈ H
(1) ∼ L2(R) with wavefunction ψ(x) = 〈x|ψ〉. Let H

(n) be the
tensor product of n = 2k − 1 copies of H

(1), one copy of which is owned by each player.
The basic idea is that the dealer hides the secret wavefunction by entangling it with k − 1

very broad Gaussians (of width so large that they are effectively constant over the range in
which the secret state is nonzero) and k − 1 very narrow Gaussians (of width so narrow
that the secret state is effectively constant over a range of its coordinate for which the latter
Gaussians are nonzero). To the extent that the required limits are achieved, we will show that
the component of the wavefunction that is accessible to every k-dimensional subspace of the
full n-dimensional Hilbert space contains full information about the secret state.

The Hilbert space H
(n) is the space L2(Rn) of square integrable wavefunctions on R

n.
Thus, if F

n denotes a real linear space of coordinate functions for R
n, then choosing a system

of Euclidean coordinates (x1, . . . , xn) for any vector x ∈ R
n is equivalent to picking an

orthonormal basis (f1, . . . , fn) for F
n such that

fi(x) = xi. (1)

We denote the inner product of these coordinate functions by fi · fj = δij .
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Suppose the dealer starts with an unentangled tensor product

|�〉 = |ψ〉 ⊗ |ϕa〉 ⊗ · · · ⊗ |ϕa〉︸ ︷︷ ︸
k−1

⊗ |ϕ1/a〉 ⊗ · · · ⊗ |ϕ1/a〉︸ ︷︷ ︸
k−1

(2)

of the secret state |ψ〉, with k −1 copies of a state |ϕa〉 and k −1 copies of a state |ϕ1/a〉, where

ϕa(x) = 〈x|ϕa〉 = (πa2)−1/4 e−x2/2a2
. (3)

Write this state

|�〉 =
∫

dxn�(x)|x1〉 ⊗ · · · ⊗ |xn〉 =
∫

dxn�(x)|f1(x)〉 ⊗ · · · ⊗ |fn(x)〉 (4)

where

�(x) = ψ(x1)

k∏
i=2

ϕa(xi)

n∏
i=k+1

ϕ1/a(xi). (5)

The dealer then entangles the secret state by a linear canonical point transformation

fi → gi =
∑

j

gijfj (6)

in which the orthogonal (Euclidean) coordinate functions {fi} are replaced by a general
linear system {gi} for which gi(x) = ∑

j gijfj (x) = ∑
j gij xj . The corresponding unitary

transformation of H
(n) then maps the state |�〉 to

|�g〉 = |det g|1/2
∫

dxn�(x)|g1(x)〉 ⊗ · · · ⊗ |gn(x)〉. (7)

To understand the entanglement procedure and the options available to the dealer, it is
useful to think geometrically in terms of vectors in the n-dimensional vector space F

n. First
observe that the process of entanglement, in which the state |�〉 is mapped to a state |�g〉,
is equivalent to expressing the wavefunction � for the state |�〉 in terms of new coordinates
that are linearly related to the original set. In geometrical terms, this corresponds to a linear
transformation from the orthonormal basis {fi} for the vector space F

n to a new basis {gi}
defined by a general linear n × n matrix (gij ). One may suppose that each of the n players is
assigned one of the basis vectors {gi}. However, the choice of the vectors {gi} is not arbitrary;
it must be such that any k players are able to disentangle the secret state but that any lesser
number is unable to do so. We shall show that, by choosing the parameter a to be sufficiently
large, only the orthogonal projection ζi of each vector gi onto the subspace of F

n spanned by
the vectors {f1, f2, . . . , fk}, is important. A set of vectors {gi} must then be chosen which
satisfy the following two conditions: (i) every subset of k vectors in the set {ζi} is linearly
independent, and (ii) the vector f1 is not a linear combination of any set of less than k of these
vectors. As we will see, these conditions guarantee any k players to be able to extract the
quantum secret. At the same time, cloning of the quantum secret is not possible [15], which
implies that any k − 1 or less players cannot extract the secret. The two conditions (i) and (ii)
can be expressed succinctly as a requirement that any k vectors from the set {f1, ζ1, ζ2, . . . , ζn}
are linearly independent, which is always possible to achieve [4]. Otherwise the choice of {gi}
by the dealer is arbitrary.

2.2. The extraction algorithm

In extracting the secret state, it is convenient to identify three subspaces of coordinates; i.e.,
express F

n as a direct sum of three mutually orthogonal subspaces

F
n = X ⊕ Y ⊕ Z (8)
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where X is the one-dimensional space spanned by f1, and Y and Z are the (k−1)-dimensional
spaces spanned, respectively, by {f2, . . . , fk} and {fk+1, . . . , fn}. Thus, we relabel the {xi}
coordinates as (x, yi, zi) coordinates with

x = x1 yi = xi+1 zi = xk+i i = 1, . . . , k − 1. (9)

The wavefunction � is then

�(x) = ψ(x)

k−1∏
i=1

ϕa(yi)ϕ1/a(zi). (10)

It will be understood in the following that all n players know the encoding transformation
in which fi → gi . Without loss of generality, we may suppose that the first k players form the
collaborating set. These players are able to make any transformation of the states in the subset
of Hilbert spaces accessible to them. However, we will restrict the transformations they can
make to those corresponding to general linear coordinate transformations, as defined above.
Let us suppose they make the transformation

gi → ξi =
∑

j

ξij fj (11)

with the understanding that ξi = gi for all i > k.
The orthogonal decomposition of F

n given by equation (8) now defines a corresponding
decomposition of every ξi vector as a sum of three mutually orthogonal vectors

ξi = αi + βi + γi. (12)

Equivalently, we can write

ξi(x) = αix +
∑

j

βij yj +
∑

j

γij zj . (13)

Provided the vectors {gi} are chosen such that any k vectors from the set {f1, ζ1, ζ2, . . . , ζn}
are linearly independent, where ζi is the orthogonal projection of gi onto the subspace
X ⊕ Y ⊂ F

n, it is possible for the collaborating players to design the transformation gi → ξi

such that

α1 = 1 β1 = 0 αi+1 = αk+i βi+1 = βk+i i = 1, . . . , k − 1 (14)

(recall that ξi = gi for i > k). We then claim that such a transformation extracts the secret
for sufficiently large values of the parameter a. We demonstrate this result explicitly for the
simple case in which k = 2 and n = 3.

For the k = 2, n = 3 case (ξ1, ξ2, ξ3) will have expansions of the form

ξ1(x) = x + γ1z (15)

ξ2(x) = αx + βy + γ2z (16)

ξ3(x) = αx + βy + γ3z (17)

and |�ξ 〉 will be given by

|�ξ 〉 = |β(γ2 − γ3)|1/2

π1/2

∫
ψ(x) exp

[
− 1

2a2
y2 − a2

2
z2

]
× |x + γ1z〉 ⊗ |αx + βy + γ2z〉 ⊗ |αx + βy + γ3z〉 dx dy dz. (18)

By a change of the variable x to x − γ1z, we then have

|�ξ 〉 = |β(γ2 − γ3)|1/2

π1/2

∫
ψ(x − γ1z) exp

[
− 1

2a2
y2 − a2

2
z2

]
× |x〉 ⊗ |αx + βy + γ ′

2z〉 ⊗ |αx + βy + γ ′
3z〉 dx dy dz. (19)
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Now observe that if a is sufficiently large that ψ(x −γ1z) ≈ ψ(x) for all values of z for which
exp[−a2z2/2] is non-negligible, then

ψ(x − γ1z) exp

[
−a2

2
z2

]
≈ ψ(x) exp

[
−a2

2
z2

]
. (20)

Moreover, this approximation becomes precise to any desired level of accuracy for sufficiently
large values of a. By a second change of variables,

x → x βy → βy − αx (21)

we also have

|�ξ 〉 = |β(γ2 − γ3)|1/2

π1/2

∫
ψ(x) exp

[
− 1

2a2

(
y − α

β
x

)2

− a2

2
z2

]

× |x〉 ⊗ |βy + γ ′
2z〉 ⊗ |βy + γ ′

3z〉 dx dy dz. (22)

Now for every secret ψ(x) decaying fast enough for |x| → ∞, the parameter a can be chosen
to be sufficiently large so that exp

[− 1
2a2

(
y − α

β
x
)2] ≈ exp

[− 1
2a2 y

2
]

for all values of x for
which ψ(x) is non-negligible. Then we have

|�ξ 〉 ≈ |β(γ2 − γ3)|1/2

π1/2

∫
ψ(x) exp

[
− 1

2a2
y2 − a2

2
z2

]
|x〉⊗|βy + γ ′

2z〉⊗|βy + γ ′
3z〉 dx dy dz

= |ψ〉 ⊗ |�〉 (23)

where |�〉 is the entangled state

|�〉 = |β(γ2 − γ3)|1/2

π1/2

∫
exp

[
− 1

2a2
y2 − a2

2
z2

]
|βy + γ ′

2z〉 ⊗ |βy + γ ′
3z〉 dy dz. (24)

The generalization of the proof to larger values of k is straightforward.

2.3. Fidelity of the secret sharing scheme

As we have seen, the CV QSS scheme works perfectly only for a → ∞ in equation (3). In
this case the dealer has infinitely squeezed ancillary states with which to entangle the secret
state |ψ〉. The situation is similar to CV quantum teleportation [16], where an ideal EPR
pair (which is a two-mode infinitely squeezed vacuum) is required for the protocol to work
perfectly. However, with some loss of fidelity the scheme can be adapted to a realistic, finite-
squeezing situation [17]. In CV QSS, finite squeezing implies that the secret state can only
be approximately extracted because there is entanglement between the secret state and the
shares in both the access structure and the adversary structure, which limits the fidelity of the
extracted state with respect to the original secret state. Also entanglement with the adversarial
shares allows some information about the secret state to escape. These compromises to CV
QSS are reduced by increasing the degree of squeezing.

A detailed analysis reveals that the reduced density operator ρ̂ ′ of the extracted secret is
related to the original density operator ρ̂ = |ψ〉〈ψ | by

ρ ′(x, x ′) ≡ 〈x|ρ̂ ′|x ′〉 = a√
πv

exp

[
−u2(x − x ′)2

4a2

] ∫
R

ρ(x − y, x ′ − y) exp

[
−a2y2

v2

]
dy

(25)

(see the appendix for the proof). Here v is the norm of the vector γ1 in equation (12) and u2 =∑k−1
i=1 u2

i , where {ui} are the coefficients of the expansion αj = ∑k−1
i=1 uiβji, j = 2, . . . , k.

The parameters u and v quantify the degree to which the secret state has been degraded for
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Figure 2. The fidelity F versus the squeezing parameter r = ln a for an arbitrary coherent state as
the secret. Two cases are presented: (1) u = 0.5 and v = 1 (solid line) and (2) u = 3 and v = 5
(dashed line).

a given a by encoding and decoding. The degradation is symmetric under the exchange of
u ↔ v. Perfect extraction corresponds to u = 0 and v = 0, which is in general unachievable
for all authorized groups of players. The reason is that the dealer controls n2 parameters by
the encoding process (the coordinates gij of the vectors gi), which are insufficient to satisfy
the conditions u = 0, v = 0 for all n!/k!(k − 1)! groups of k players.

The extraction fidelity of the system can be characterized by evaluating F = 〈ψ |ρ̂ ′|ψ〉
for some standard secret state |ψ〉. For an arbitrary coherent state as the secret, the fidelity is
given by the function

F = [1 + (u2 + v2)/2a2 + u2v2/4a4]−1/2. (26)

The dependence of F on r = ln a for some particular values of u and v can be seen in
figure 2. The fidelity tends to unity for large squeezing (a → ∞, r → ∞) and to zero for
large antisqueezing (a → 0, r → −∞). The fidelity for r = 0 corresponds to the case when
the ancillary states are all vacuum states.

An interesting challenge is to determine the encoding procedure that would maximize the
average fidelity for any access group for a given value of r.

3. Efficient extraction

In the previous section we have established an extraction protocol for the access structure; here
we seek the most efficient protocol, which minimizes the total number of squeezers (expensive
components in an active interferometer) required. In the following we show that by a suitable
choice of a particular disentangling transformation, it is possible to reduce the total number of
squeezers required in the extraction to not more than two.

Let ξi → ζi denote the orthogonal projection of ξi ∈ F
n to the subspace X ⊕ Y ⊂ F

n so
that

ξi(x) = ζi(x) +
∑

j

γij zj ζi(x) = αix +
∑

j

βij yj . (27)
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Claim. A transformation gi → ξi = αi + βi + γi , with αi ∈ X, βi ∈ Y and γi ∈ Z, which
leaves the coordinates ξi = gi unchanged for i = k + 1, . . . , n and is such that

α1 = 1 β1 = 0 span(ζ2, . . . , ζk) = span(ζk+1, . . . , ζn) (28)

disentangles the secret state for sufficiently large values of the parameter a.
To prove this claim, we show, by a change of variables that, for sufficiently large values

of a, the state

|�ξ 〉 = |det ξ |1/2
∫

dx ψ(x)

k∏
i=2

1

(π)1/2

∫
dyi dzi exp

[
− 1

2a2
y2

i − a2

2
z2
i

]
× |x + γ1(x)〉 ⊗ |ζ2(x) + γ2(x)〉 ⊗ · · · ⊗ |ζn(x) + γn(x)〉 (29)

defined by the transformation gi → ξi , is expressible in the form

|�ξ 〉 = |ψ〉 ⊗ |�〉 (30)

with

|�〉 = |det ξ |1/2
k∏

i=2

1

(π)1/2

∫
dyi dzi exp

[
− 1

2a2
y2

i − a2

2
z2
i

]
× |β2(x) + γ ′

2(x)〉 ⊗ · · · ⊗ |βn(x) + γ ′
n(x)〉. (31)

This result is achieved by first changing the variable x to x −∑j γ1j zj and noting that,
if a is sufficiently large, then ψ

(
x −∑j γ1j zj

) ≈ ψ(x) for all values of
∑

j γ1j zj for which

exp
[− a2

2

∑
i z

2
i

]
is non-negligible. This shows that

|�ξ 〉 = |det ξ |1/2
∫

dx ψ(x)

k∏
i=2

1

(π)1/2

∫
dyi dzi exp

[
− 1

2a2
y2

i − a2

2
z2
i

]
× |x〉 ⊗ |ζ2(x) + γ ′

2(x)〉 ⊗ · · · ⊗ |ζn(x) + γ ′
n(x)〉. (32)

Next observe that, since the vectors {ζk+1, . . . , ζn} are linear combinations of the vectors
{ζ2, . . . , ζk}, the change of variables given by the projection ζi = αi + βi → βi , for
i = 2, . . . , k, results in the corresponding projections ζi → βi for i = k + 1, . . . , n. Now, if
βij is defined such that∑

j

βijβjk = δik (33)

then the projection ζi → βi , for i = 2, . . . , k, corresponds to the coordinate transformation
yi → yi −

(∑
j βijαj

)
x. Thus, if a is sufficiently large that exp

[− 1
2a2

(
yi −

(∑
j βijαj

)
x
)2] ≈

exp
[− 1

2a2 y
2
i

]
for all values of x for which ψ(x) is non-negligible, we obtain equation (29).

Now, let the vectors gi defining the encoded state |�g〉 (7) by the linear transformation
(6) have decomposition, parallel to that given by equation (27),

gi = κi + λi i = 1, . . . , k

gi = ξi = ζi + γi i = k + 1, . . . , n
(34)

with κi ∈ X ⊕ Y and λi ∈ Z, respectively. And let T denote a transformation

gi → ξi =
k∑

j=1

Tijgj i = 1, . . . , k (35)
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such that the vectors

ζi =
k∑

j=1

Tij κj i = 1, . . . , k (36)

satisfy the disentanglement criteria (28).
The condition that the vectors ζ2, . . . , ζk span the same subspace of X ⊕ Y as do

ζk+1, . . . , ζn can be satisfied by requiring that both sets are orthogonal to a common vector
v ∈ X ⊕ Y. Thus, if v ∈ X ⊕ Y is a vector defined such that

v · ζi = 0 i > k (37)

the transformation T is required to satisfy the equation

v · ζi =
k∑

j=1

Tij v · κj = 0 ∀i = 2, . . . , k. (38)

To satisfy the first condition of equation (28), T should also be such that

ζ1 =
k∑

j=1

T1j κj = f1 (39)

so that ζ1(x) = x.
Equation (39) implies that the first row of the matrix T is the row vector a =

(a1, a2, . . . , ak) whose components are the coefficients in the expansion f1 = ∑k
j=1 ajκj ,

i.e., T1j = aj . The remaining rows can be defined as a set of orthogonal row vectors
{Ti; i = 2, . . . , k}, all of which are orthogonal to the unit row vector W1 whose components
are given by

W1j = v · κj√∑k
i=1(v · κi)2

. (40)

The orthogonality of the vectors {Ti; i > 1} to W1 then ensures that
∑k

j=1 TijW1j = 0 for
i > 1 and that condition (38) is satisfied. The norms of the orthogonal vectors {Ti; i > 1} are
arbitrary and can be chosen to minimize the cost of the transformation. We find (cf section 4)
that it is convenient to choose all but one of these vectors (e.g., the vector T2) to be normalized
to unity. Denoting the norm of the vector T2 by γ , we then have

T1j = aj T2j = γW2j Tij = Wij i > 2 (41)

where Wij is an orthogonal matrix.
As remarked above, an orthogonal transformation of the collaborating players’ states can

be achieved with passive elements. However, the replacement of the first row of W by the
vector a, in forming the matrix T, means that the resulting transformation involves squeezing
operations and hence a need for active elements. As we now show, the transformation defined
by T can be achieved with just two squeezers.

Choose the vector W2 to lie in the span of the vectors a and W1. It then follows that a is
expandable as a = αW1 + βW2 and

T =




α β 0 . . . 0
0 γ 0 . . . 0
0 0
...

... I

0 0


W ≡ V W (42)
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Figure 3. The general scheme of an interferometer used by the players to decode the secret state.
The passive k-port interferometer is followed by two independent single-mode squeezers, and the
last step is a passive two-mode interferometer that yields the secret at one output port.

with a free parameter γ �= 0. This parameter can be adjusted, according to the criteria outlined
in section 4 to minimize the demands on the squeezing resources. The GL(k, R) matrix V can
now be factored as V = XVdY , with X and Y orthogonal matrices and

Vd = diag(v1, v2, 1, 1, . . . , 1). (43)

The complete transformation T then assumes the simple form

T = V W = XVdYW = XVdZ (44)

with both X and Z orthogonal matrices.
The disentangling transformation represented by the matrix T is now achieved by a

sequence of three transformations: the first transformation, represented by the orthogonal
matrix Z, is achieved by a passive interferometer consisting of only beam splitters and phase
shifters; the transformation represented by the diagonal matrix Vd is given by single-mode
Sp(1, R) squeezers on the first two modes, with squeezing parameters r1 = ln v1 and r2 = ln v2;
finally, the transformation corresponding to the matrix X is given by a two-mode beam splitter
(see figure 3). Hence the number of active optical elements (squeezers) is reduced to two.

4. Total amount of squeezing

It is of interest not only to consider the number of active optical elements necessary for the
extraction part of QSS, but also the total amount of squeezing R. It is natural to define this
quantity as the sum of magnitudes of squeezing parameters corresponding to the two squeezers,
i.e.,

R = |r1| + |r2| = |ln v1| + |ln v2| (45)

which can be minimized by a judicious choice of γ in equation (42).
We can express R as R = 1

2 (|ln λ1| + |ln λ2|), where λ1,2 are the eigenvalues of the
symmetric matrix V ′Ṽ ′ with V ′ = (

α β

0 γ

)
, and Ṽ ′ the transpose of V ′. A simple calculation

shows that the eigenvalues are

λ1,2 = 1
2

[
α2 + β2 + γ 2 ±

√
(α2 + β2 + γ 2)2 − 4α2β2

]
. (46)

Depending on γ , the total amount of squeezing R is either (i) R = 1
2 |ln(λ1λ2)| (if both

ln λ1 and ln λ2 have the same sign) or (ii) R = 1
2 |ln(λ1/λ2)| (if ln λ1 and ln λ2 have different

signs). We seek γ that minimizes R, which can occur for either case (i) or (ii), so both must
be checked. We define the quantity κ ≡ (1 − α2 − β2)/(1 − α2) and have
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(i) The minimum value of R(γ ) is Rmin = |ln(κα)| and occurs for γ0 = √
κ in the following

situations:

α2 + β2 < 1 and α2 + β2 < κ

α2 + β2 > 1 + β2/α2 and α2 + β2 > κ

(ii) The minimum value of R(γ ) is Rmin = ln[(
√

α2 + β2 + |β|)/|α|] and occurs for
γ0 =

√
α2 + β2 in the following situations:

1 � α2 + β2 � 1 + β2/α2

κ � α2 + β2 � 1

1 + β2/α2 � α2 + β2 � κ.

The strategy for a collaborating group of players to minimize the squeezing resources for
the extraction of the secret state is the following: for given α and β, the players calculate the
value of κ and decide which of the two cases (i) or (ii) occurs. Then they find the value γ0 and
construct the matrix T in equation (42) and from this, the corresponding active interferometer
that contains only two squeezers with a minimum total amount of squeezing equal
to Rmin.

5. Conclusion

We have shown that the extraction procedure in optical continuous-variable quantum secret
sharing can be achieved with a small number (at most two) of squeezing elements for any
authorized group of players. In particular, we have demonstrated this for the QSS threshold
schemes. We have quantified the total amount of squeezing defined as the sum of absolute
values of the single-mode squeezing parameters, and found its minimum value analytically. We
have also seen that in the realistic situation when the dealer has only finite squeezing resources
available, the density operator of the extracted secret becomes a Gaussian convolution of the
original secret state.
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Appendix A. Density operator of the extracted secret

The total density operator ρ̂T of all shares after the extraction procedure reads

ρ̂T =
∫

R
2n

ρ(x, x ′)|ξ1(x)〉1〈ξ1(x′)| ⊗ |ξ2(x)〉2〈ξ2(x′)| ⊗ · · · ⊗ |ξn(x)〉n〈ξn(x′)|

× exp

{
−

k−1∑
i=1

[
y2

i + y ′2
i

2a2
+

a2
(
z2
i + z′2

i

)
2

]}
dnx dnx′ (A1)

up to a normalization factor (we will neglect such factors throughout the appendix). Here the
share is indicated by a subscript and the product ψ(x)ψ∗(x ′) is written as the density operator
element ρ(x, x ′) of the original secret.

The density operator ρ̂ ′ of the extracted secret is obtained by tracing ρ̂T over shares
2, 3, . . . , n. In the following we will calculate the density operator element ρ ′(w,w′) ≡
〈w|ρ̂ ′|w′〉. Using the special form (13), (14) of the vectors ξi and employing the fact
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that 〈x|x ′〉 = δ(x − x ′), we get

ρ ′(w,w′) =
∫

R
4k−4

ρ(w − γ1z, w′ − γ1z′)] exp

{
−

k−1∑
i=1

[
y2

i + y ′2
i

2a2
+

a2
(
z2
i + z′2

i

)
2

]}

×
k∏

i=2

δ[αi(w − w′) + βi(y − y′) + γi(z − z′)]

×
k∏

i=2

δ[αi(w − w′) + βi(y − y′) + γk−1+i (z − z′)]

× dk−1y dk−1y′ dk−1z dk−1z′. (A2)

The integration over x, x ′ has been performed. Now, in the following we will use the property
of the δ-function

r∏
i=1

δ(ai) = ‖T ‖
r∏

i=1

δ


 r∑

j=1

Tij aj


 (A3)

where T = (Tij ) is a real non-singular matrix and ‖T ‖ its Jacobian (the magnitude of
determinant of T). Using the special case of equation (A3), δ(x)δ(y) = δ(x)δ(x − y), we can
rewrite equation (A2) as

ρ ′(w,w′) =
∫

R
4k−4

ρ(w − γ1z, w′ − γ1z′)] exp

{
−

k−1∑
i=1

[
y2

i + y ′2
i

2a2
+

a2
(
z2
i + z′2

i

)
2

]}

×
k∏

i=2

δ[αi(w − w′) + βi(y − y′) + γi(z − z′)]

×
k∏

i=2

δ[(γk−1+i − γi)(z − z′)] dk−1y dk−1y′ dk−1z dk−1z′. (A4)

To express the product
∏k

i=2 δ[(γk−1+i − γi)(z − z′)] of δ-functions, we employ equation (A3)
to obtain

k∏
i=2

δ[(γk−1+i − γi)(z − z′)] =
k−1∏
i=1

δ(zi − z′
i ) (A5)

up to a multiplicative factor provided that the square matrix � composed of the coefficients
of the k − 1 vectors γk−1+i − γi(i = 2, . . . , k) is non-singular. This is indeed the case as
we can see if we consider the transformation xi → ηi , where ηi = ξi for i = 1, . . . , k and
ηi = ξi −ξi−k+1 for i = k +1, . . . , n. This transformation is clearly non-singular and therefore
the subdeterminant of the matrix of partial derivatives ∂ηi/∂xj , i, j = k + 1, . . . , n, which is
precisely the matrix �, is nonzero.

Inserting equation (A5) into equation (A4) and integrating over z′
1, . . . , z

′
k−1, we obtain

a multiple convolution of ρ(w,w′) with a Gaussian. Using the associative properties of
convolutions and making the convolution of the k − 1 Gaussians first, we obtain

ρ ′(w,w′) =
∫

R

ρ(w − vz,w′ − vz) e−a2z2
dz

∫
R

2k−2
exp

(
−

k−1∑
i=1

y2
i + y ′2

i

2a2

)

×
k∏

i=2

δ[αi(w − w′) + βi(y − y′)] dk−1y dk−1y′ (A6)

where v2 =∑k−1
i=1 γ 2

1i .
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Next we express αi as the sum αj = ∑k−1
i=1 uiβji, j = 2, . . . , k. This is possible as the

vectors βi , i = 1, . . . , k − 1 are linearly independent for a similar reason as was explained
above for the vectors γk−1+i − γi and therefore the matrix composed of βij is non-singular.
Now we can re-express the δ-function product in equation (A6) as

k∏
i=2

δ[αi(w − w′) + βi(y − y′)] =
k∏

i=2

δ




k−1∑
j=1

βij [uj (w − w′) + (yj − y ′
j )]




=
k∏

i=2

δ




k−1∑
j=1

βij (Yj − Y ′
j )]


 =

k−1∏
i=1

δ(Yi − Y ′
i ) (A7)

where Yi = yi + uiw, Y ′
i = y ′

i + uiw
′.

Rewriting the integral over y, y′ in equation (A6) using equation (A7), integrating over
y′, and changing the variables of the remaining integral from y to Y we obtain∫

R
k−1

exp

{
−

k−1∑
i=1

(Yi − uiw)2 + (Yi − uiw
′)2

2a2

}
dk−1Y = exp

{
−

k−1∑
i=1

u2
i

4a2
(w − w′)2

}
.

(A8)

Combining now equations (A6) and (A8), changing the integration variable z to y = vz,
switching from w,w′ to x, x ′ and properly normalizing, we obtain finally equation (25):

ρ ′(x, x ′) = a√
πv

exp

[
−u2(x − x ′)2

4a2

] ∫
R

ρ(x − y, x ′ − y) exp

[
−a2y2

v2

]
dy. (A9)
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